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Abstract. The upper bound on the critical temperature in the k ing  model, recently derived 
from Callen’s correlation equalities by S i  Barreto and O’Carroll and improved by Monroe, 
is further improved by a more economical use of Messager and Miracle-Sole inequalities, 
starting from a different Callen correlation equality. 

1. Introduction 

In two recent papers, SB Barreto and O’Carroll(l983) and subsequently Monroe (1984) 
showed how upper bounds on the critical temperature of the Ising model in two and 
three dimensions can be derived from Callen’s correlation equalities (Callen 1963). 
These correlation equalities in their simplest form hold for Ising spin variables Si, 
distributed according to the canonical law 

Prob({ Si}) = Z - ’  exp p c J 3 . S .  ( i<j v I 1) 

and are as follows 

(SJXS,, . . .I> = Ws,, . . .I tanh(P6)) .  ( 2 )  

f is an arbitrary function of the spins which is independent of SI and has a finite 
expectation value, E, denotes the factor of SI in the sum Z J,S,S,, and ( ) denotes the 
expectation value with respect to the probability distribution ( l ) ,  allowing only the 
values *1 for each of the spins {S”} .  The equality (2) is easily proved by writing the 
probability distribution (1) as the product of a conditional distribution, conditioned 
on the values of all spins other than SI, and the probability distribution of these other 
spins, and then averaging over S, explicitly. 

S6 Barreto and O’Carroll (1983) considered the particular equality 

W,) = (S, tanh(PE1)) (3) 

and, by estimating the right-hand side, established the necessary conditions for using 
a theorem of Simon (1980) to prove the exponential decay of (S,S,) with the distance 
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between the sites i and j in the square and cubic lattices with ferromagnetic nearest- 
neighbour interactions (Ji, = J > 0, for nearest neighbours), on the provision that ,B 
was less than a certain limit, which thus gives a bound on the critical temperature. 
For the cubic lattice they obtained pJz0.1844. Their method was improved by 
Monroe (1984), who did a more economical estimate of the right-hand side of (3). 
He obtained pJz0.1976. A standard assessment of the true value of PcJ is 0.2217 
(see, e.g. Domb 1974, Pawley et a1 1984), whereas the mean-field approximation gives 
the bound PcJ 3 0.1667 (Griffiths 1967a). 

The purpose of this paper is to contribute a further improvement of the bound by 
what essentially corresponds to a better method of estimating the right-hand side of 
(3). However, in order to achieve a simpler self-contained treatment, we actually use 
a different Callen correlation equality together with a different criterion for the 
disordered phase (not using Simon’s theorem). We thus use the equality 

( S )  = (tanh(PEi)) (4) 

pcJ 2 PoJ = 0.199 96. ( 5 )  

and determine a bound Po, below which there can be no ( S , )  # 0. We then obtain 

On the way, we show that already a crude estimate of the right-hand side of (4) leads 
to a bound as good as PcJ 2 0.1955. 

The bound ( 5 )  is an improvement over several rigorous bounds that have been 
established in the literature. ( In  addition to the references above, see, e.g., Holley and 
Stroock 1976, Brydges et a1 1982.) It, however, is not the best rigorous bound known. 
The relatively old result of Fisher and Sykes (1959) and Fisher (1967), pcJ 2 0.2085, 
obtained from a comparison of the high-temperature expansion graphs with self- 
avoiding random walks, is still the closest to the estimated ‘true’ value P C J  = 0.2217. 
Also, by exploiting a correlation equality due to Thompson (1971), Krinsky (1975) 
has obtained the bound P,J 5 0.2027. However, the methods that led to these results 
in both cases depend decisively on special properties of the S 2  = 1 Ising model, while 
the method described in the present paper does hold the promise of being generalisable to 
other statistical models. 

2. The upper bound 

We evaluate Callen’s correlation equality (4) for a fixed but arbitrary spin So in the 
simple cubic lattice with translation invariant ferromagnetic nearest-neighbour interac- 
tions, denoting the nearest neighbours of So by SI, Sz, . . . , s6: 
(So) = (tanh(PE0)) 

= (tanh(PJ( SI + s2 -k . . . + &))) 
6 

= d  tanh(6PJ) 1 (Si)+[: tanh(4PJ)-d tanh(6pJ)](g) 
i = l  

+ [$ tanh(2p.l) - 4 tanh(6PJ)I ( h ) ,  
where 
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h = -%( 1 -A( i = l  i si ) ; )  1 SiSjSk, 

and the summation X+ is over all (non-ordered) sets of three different indices. g and 
h play the role of indicator functions, taking the value of the sum of the spins if this 
is 1 4  or 12 ,  respectively, and the value 0 otherwise. Note that the expressions in the 
curly brackets are both non-negative. The expectation values ( ) are the infinite volume 
limits of expectation values taken with respect to (1) for a finite subsystem of spins 
(e.g. a cube of N 3  spins and N+oc), fixing the boundary spins to +l .  

Our strategy is to use correlation inequalities to bound the right-hand side of (6) 
from above by ( S o )  times an explicit function of p, and check whether the ensuing 
inequality can be satisfied with a positive (So) .  Here we shall indeed be dealing with 
an increasing function of p that leads to a lower limit for pc. 

The translation and (discrete) rotation symmetries of the infinite lattice allow us 
to greatly simplify the notation. Thus we can drop the indices and write 

( g )  = 3((S) - ( S S S S S ) ) ,  (9) 

where the secdnd expectation value contains any five of the nearest neighbours of the 
spin chosen for consideration. The expectation value of h can be written as 

where the summations are over all different sets of two, resp. three, of the indices of 
the six nearest-neighbour spins to the spin So. There are two kinds of three-spin 
correlation functions that occur that we denote by (SSS)Il, if the three spins lie in a 
plane containing So, and by (SSS) , ,  if this is not the case. Using Messager and 
Miracle-Sole inequalities (Messager and Miracle-Sole 1977), we show in the appendix 
that 

( S S S ) ,  3 ( S S S )  ,, 3 (SSSSS) .  (11) 

Carrying out the multiplication in (lo),  we obtain 

# 

(12) 

1 ( h )  = & (60( S )  + 6O(SSSSS) - 6 E ( SiSjSk) 

=&5(S)+ 5(SSSSS)-6(SSS);l-4(SSS),), 

The easiest way to get the desired condition on the critical temperature is to entirely 
by 2. From (6), neglect the negative contributions to (9) and (13) and also replace 

one then has 
( S )  S [ d  tanh(6p.l) +$ tanh(4P.l) + tanh(2pJ)](S) (14) 

and ( S )  can be larger than zero only if the expression in the square brackets is larger 
than or equal to one. There follows that 

p c J  0.1955, (15) 
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which already is considerably better than the bound 0.1844 obtained by SA Barreto 
and O’Carroll (1983). An improvement of (15) is achieved by using, instead of the 
zeros, non-zero lower bounds to the 3- and 5-spin correlation functions in (9) and (13) 
(and of course retaining the factor in (13)). Using Griffiths inequalities (Griffiths 
1967b, Kelly and Sherman 1967), we have 

Furthermore, by Griffiths inequalities, the values of the two- and four-spin correlation 
functions are reduced by calculating them for small finite lattices, instead of the infinite 
lattice. SA Barreto and O’Carroll in a similar step in their calculation used ( S i S j ) 3  
(SiSj)l, where the right-hand side is the next-nearest-neighbour correlation in a one- 
dimensional chain. Monroe substituted this with a better bound using (SiSj)*, which 
is the correlation calculated for the spins belonging to a finite system of eight spins 
located at the corners of an elementary cube with the two particular spins sitting 
diagonally in a face. Although in our calculation, this choice for the pair correlation, 
together with a simple lower bound for the 4-spin correlation (using a planar subsystem 
of nine spins), already brings about the main improvement (0.1996) over Monroe’s 
bound, we shall advance the result slightly more by using a larger subsystem. Thus 
we calculate both the two-spin and the four-spin correlation in a subsystem of 12 spins 
located at the corners of two elementary cubes that share a common face. The two 
spins of the pair correlation function occupy diagonal sites in the shared face, and for 
the four-spin correlation function, the additional two spins are situated at both ends 
of the double cube. (The 4-spin configuration was kindly suggested to us by J Monroe 
(private communication).) A straightforward calculation of the correlation functions 
yields 

(Ss) , ,={c(4)2c(3)4+ c (3 )2c (1 )2 [4c (4 )c (2 )  -21 

+ C(1)4[2C(4)+4C(2)-1]-8C(3)C(2)C(1)3}/D (18) 

(19) 
(SSSS) ,2  = { C(4)2C(3)4 - C(3),C( 1),[4C( 2), - 21 + C (  1)4[2C(4) - 4C(2), + 3]}/ 0, 

where 

D = c (4 )2c (3 )4+  c(3)2c(1)2[4c(4)c(2)+2+4c(2)2] 

+ C (  1)4[2C(4) +4C(2) +4C(2)’+ 31 + 8C(3)C(2)C( 1)3  (20) 
and C( n )  denotes cosh( nPJ). 

( S ) S  (tanh(6PJ)+[$ tanh(4PJ) -; tanh(6PJ)](l - ( S S S S ) , , )  

Using (18) and (19) with (9), (13), (16) and (17), we obtain from (6) the inequality 

+ $[tanh(2PJ) - f tanh(6PJ)](l- ( S S ) , , ) }  ( S ) ,  (21) 
which cannot be satisfied with a strictly positive ( S ) ,  when p is less than a certain 
value Po, which thus is our lower bound on the critical value pc, 

(22) 
With P = l / k T ,  (22) provides an upper bound on the critical temperature for the 
three-dimensional ferromagnetic nearest-neighbour Ising model. 

pcJ 2 PoJ = 0.199 96. 
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Appendix. Proof of the inequalities (11) 

The inequalities (11) are consequences of a general set of inequalities, which were 
derived by Messager and Miracle-Sole (1977) for Ising systems that have a reflection 
symmetry. Consider a ferromagnetic nearest-neighbour Ising spin system with the 
Hamiltonian H = -fz,,, J,,S,S, on a lattice A, and let the map c p :  A +  A be a reflection 
symmetry of the system with respect to some fixed plane. Let A I  denote the part of 
the lattice that is on one side of the plane, including whatever sites that happen to lie 
in the symmetry plane itself. Thus 

('41) A = AI U cp(Al),  while A I  n cp(Al) = N = { i l i  = vi}. 
For any A c A, denote SA = nlcA SI. 

Theorem. (First Messager and Miracle-Sole (1977) inequality): Let A c AI and B c 
Al\N. Then 

( S A S p ( B ) ) *  ('42) 

Remark. The original proof of this theorem (Messager and Miracle-Sole 1977) did 
not allow A to contain spins from within the reflection plane. It requires only a minor 
change, however, to include that situation. This is in fact necessary for our application 
of the theorem. Thus one shows that SA(SB - Sp(B)), written in terms of the variables 
p,=i (S,+S,+, )  a n d a ,  =f(SI-Spl), iEAl,isasumofproducttermsII, , , ,  pCL:'II,,,, aTk, 
n,, mk E (0, 1,2}, multiplied by positive coefficients. Written in the new variables, the 
Hamiltonian H still has ferromagnetic pair couplings, and the non-negativity of the 
expectation values of the products follows by a series expansion of exp(-PH), as in 
the standard duplicate variables proof of the Griffiths inequalities (see, e.g., Glimm 
and Jaffe 1981, p 5 5 ) .  

In order to prove the inequalities ( l l ) ,  we denote the pairs of nearest-neighbour 
spins of So in opposite directions by (Sl, &), (S2, S,) and ( S 3 ,  SJ, and consider the 
symmetry plane that contains SI, So and s6 and has S2 and S3 on the same side (S, 
and S ,  are the spins on their mirror image sites). Then, using (A2) with A =  
(SI, S6, S2,  SJ and B = {S3}, we have 

(S1S6SZ) (S1S6S2S3S5), (A31 

(S1S2S3) (SIS2S5). ('44) 

and choosing A = {SI, S2}  and B = { S 3 } ,  we have 

In our simplified notation, however, (S1S6S2S3S5) = (SSSSS), (SIS6S2) = (S,S,S,) = 
(SSS),, and (SlS2S3) = (SSS),, so that (1 1) follows. 
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